
ISOSTATIC INDUSTRIES INC., CHICAGO, IL 800-621-5500

MATERIAL COMPOSITION

TU is a composite of the following materials which are used to produce self-lubricating dry sliding bearings:

- 1. Low Carbon **Steel** Backing allows for extremely high load capacity. (0.50 2.7 mm thickness)
- 2. Sintered **Bronze** offers optimal heat dispersion. (0.20 0.35 mm thickness)
- 3. **PTFE**-lead sliding surface creates a low friction coefficient and allows for a wide temperature range. (0.02 mm thickness)

As noted above, TU bearings contain a certain quantity of lead, small quantities of which are released from the bearing during operation. For some applications where food is involved, the presence of lead is not acceptable and therefore, a lead-free version has been made available. The absence of lead may lead to a reduction in the useful life of the bearing.

DESIGN PARAMETERS

LOADS - P

Dynamic pressures up to 20,300 psi (140 N/mm²) Static loads up to 36,250 psi (250 N/mm²) Offering exceptional load carrying capacity and resistance to shock loading.

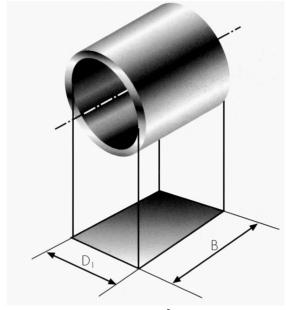
SPEEDS - V

Speeds up to 1,900 fpm (10 m/s) with lubrication.

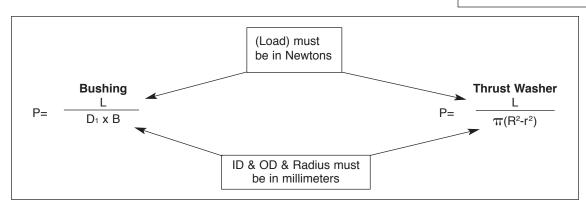
PERFORMANCE - PV

PVs to 51,000 psi-fpm (1.8 N/mm² x m/s) for continuous loads, 102,000 psi-fpm (3.6 N/mm² x m/s) for short-term use and 26,000 psi-fpm (.9 N/mm² x m/s) for alternating loads. Performance has been increased dramatically when lubricated.

TEMPERATURES

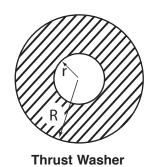

From -328 to +536 degrees F (-200 to +280 degrees C).

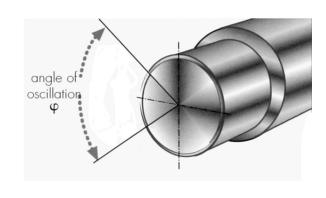
• TU self-lubricating bearings can be used where many liquid lubricants fail.


ISOSTATIC INDUSTRIES INC., CHICAGO, IL 800-621-5500

Description	Symbol	Units of measure
Internal diameter of the bearing	D ₁	mm
Internal diameter of the thrust washer	D4	mm
External diamter of the thrust washer	D₅	mm
Length of the bearing	В	mm
Load on the bearing	L	N=(Newton)
Speed of rotation	N	r.p.m.
Angle of oscillation	φ	° degrees
Frequency of oscillation	Nosz	cycles/minutes
Nominal life	Lh	hours
External radius of the thrust washer	R	mm
Internal radius of the thrust washer	r	mm

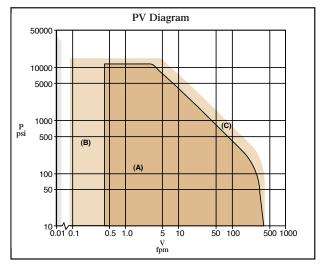
Metric Conversion Chart					
Multiply by					
Inch [in]	25.4	Millimeters [mm]			
Pounds/force [lbf]	4.4482	Newton [N]			
foot/minute [ft/min]	0.00508	Meter / second [m/s]			
Pounds per square inch [psi]	0.006895	Newton / square millimeter [N/mm2]			




 $PV = (N/mm^2) (m/s)$ V = m/s $P = N/mm^2$

Due to the many different factors involved, the Life formula should only be treated as a rough estimate.

ROTATION OF BEARING	OSCILLATION OF BEARING		
$V = \frac{\pi \times D_1 \times N}{60 \times 10^3}$	$V = \frac{\pi \times D_1 \times 29 \times Nosz}{60 \times 10^3 \times 360}$		
ROTATION ON WASHER	OSCILLATION ON WASHER		
$V = \frac{\pi \times D_5 \times N}{60 \times 10^3}$	$V = \frac{\pi \times D_5}{60 \times 10^3} \times \frac{29 \times Nosz}{360}$		


ISOSTATIC INDUSTRIES INC., CHICAGO, IL 800-621-5500

The operating life for dry applications of TU Self-lubricating bearings is inversely proportional to the load factor (p x v) but, in order to achieve a close approximation of the figure, the following corrective factors must be introduced:

- $K_a = constant$ relative to the type of application;
- fp = load correction factor;
- fc = application characteristics and temperature correction factor;
- f_d = bearing size correction factor;
- fm = shaft material correction factor.

$$L_{h} = \frac{K_{a}}{pv^{1/2}} x f_{p} x f_{c} x f_{d} x f_{m}$$

f _p = load correction factor					
p = N/mm ² or psi					
N/mm ²	<10	<25	< 50	> 60	
psi	<1450	<3625	<7252	<8702	
	1	0.3	0.2	0.1	

- A. Service life calculation may be used.
- B. Quasi-static: Call before using this Calculation
- C. Requires optimal heat removal.

f_c = application characteristics and temperature correction factor							
Characteristics	Heat Dissipation	Temperature °C 20 60 100 150 200 280			280		
Continuous Good Dry Operation		1.0	0.8	0.6	0.4	0.2	0.1
Continuous Dry Operation	Poor	0.5	0.4	0.3	0.2	0.1	-
Intermittent Operation Interval > 10 x Operating Time	Good	2.0	1.6	1.2	0.8	0.4	0.2
Constant Immersion in Water		2.0	1.6	0.8	-	-	-
Alternating Immersion in Water		0.4	0.2	0.1	-	-	-
Constant Immersion in Lubricant		3.0	2.4	1.8	1.2	0.8	-

f_m = shaft material correction factor			
Material f _m			
Low carbon steel	1		
Hardened steel	1.5		
Stainless Steel	2		
Cast iron (0.4 RQ)	1		
Aluminum	0.4		
Bronze	0.4		
Plating	f _m		
Zinc Cadmium	0.2		
Nickel	0.2		
Chrome	2		
Anodized aluminum	2		

K_a = constant relative to the type of application					
UNIDIRECTIONAL ROTATING THRUST LOAD LOAD LOAD					
400	800	250			

f_d = bearing size correction factor							
Shaft diameter (mm)							
(mm)	≤ 20	≤ 40	≤ 100	≤ 150	>150		
(inch)		< 1.6	< 3.9	< 5.9	> 5.9		
	1.0 0.9 0.7 0.5 0.4						